NAVAL POSTGRADUATE SCHOOL
Monterey, California

19980210 129

DEVELOPMENT OF GRAPHICAL USER INTERFACE

STANDARDS AND PROTOTYPE FOR THE STUDENT

SERVICES DEPARTMENT OF THE MARINE CORPS
INSTITUTE

THESIS

by
Gerald L. Hehe
September, 1997

Thesis Advisor: Magdi N. Kamel
Second Reader: Dale Courtney

Approved for public release; distribution is unlimited.

DTIC QUALITY BISPEUYED 8

Pll Redacted

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintamning the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave bilank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September, 1997 Master’s Thesis
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

Development of Graphical User Interface Standards and Prototype for the
Student Services Department of the Marine Corps Institute

6. AUTHOR(S)

Hehe, Gerald L.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) %RZE\%R#&G REPORT
Naval P OStgmdua[e School NUMBER

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /

Director of Marine Corps Institute, Washington Navy Yard, 912 Poor St. SE., MoxggSCI:%GREPORT NUMBER

Washington, D.C. 2039 1-5680

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

This research supports a year long Marine Corps Institute project initiated to migrate from a closed non-relational legacy
system to an open client/server system architecture in response to many identified shortcomings of the current information system
used by the Student Services Department. The objectives of this thesis are: (1) to identify a set of Graphical User Interface (GUI)
guidelines for application development, (2) design and develop a proof-of-concept prototype that demonstrates the functionality of
a relational database management system, and (3) exercise usability testing to validate the prototype functionality. Additionally,
an object oriented visual development tool is used to develop the prototype application based on process and data modeling
constructs. Implementation recommendations include: (1) adopting a continuous application development strategy based on
modern concurrent process and dzta modeling constructs, (2) utilizing an object oriented visual development tool that
compliments the target relational darabase management system, (3) utilizing the GUI guidelines identified during this research
for future application development, and (4) applying usability testing to validate application functionality prior to implementation.

14. SUBJECT TERMS 15. NUMBER OF
Graphical User Interface, Departmenr of Defense, Marine Corps Institute, Rapid Application Development, PAGES
Relational Database Management Sysiem, Object Oriented Programming 133

16. PRICE CODE

17. SECURITY CLASSIFICATION OF | 18. SECURITY CLASSIFICATIONOF | 4o secymivy cLASSIF-caTion | 20; LIMITATION
THIS PAGE OF ABSTRACT

REPORT Hindternl OF ABSTRACT

Unclassified netasst Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

DEVELOPMENT OF GRAPHICAL USER INTERFACE STANDARDS AND
PROTOTYPE FOR THE STUDENT SERVICES DEPARTMENT OF THE MARINE
CORPS INSTITUTE

Gerald L. Hehe
Lieutenant Commander, United States Navy
B.S., Northern Arizona University, 1981
Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author: \ '

Gerald L. Hehe

Approved by: &@ﬂ&m

e 1

Magdi N.\‘kamel, Thesis Advisor I

/#\MA G

(/ Dale Courtney, Associate Advisor

e s

Reuben Harris, Chairman
Department of Systems Management

i

v

ABSTRACT

This research supports a year long Marine Corps Institute project initiated to
migrate from a closed non-relational legacy system to an open client/server system
architecture in response to many identified shortcomings of the current information system
used by the Student Services Department. The objectives of this thesis are: (1) to identify
a set of Graphical User Interface (GUI) guidelines for application development, (2) design
and develop a proof-of-concept prototype that demonstrates the functionality of a
relational database management system, and (3) exercise usability testing to validate the
prototype functionality. Additionally, an object oriented visual development tool is used to
develop the prototype application based on process and data modeling constructs.
Implementation recommendations include: (1) adopting a continuous application
development strategy based on modem concurrent process and data modeling constructs,
(2) utilizing an object oriented visual development tool that compliments the target
relational database management system, (3) utilizing the GUI guidelines identified during
this research for future application development, and (4) applying usability testing to
validate application functionality prior to implementation.

TABLE OF CONTENTS

I INTRODUCGCTIONoociiiiiiiiiiteettet ettt ettt sa et se et eae e

A BACKGROUND ...t
B. SCOPE LIMITATIONS AND ASSUMPTIONS..........ocviriiinnenrene.
C. OBJECTIVES... ..ottt sttt
D. RESEARCH QUESTIONS........oo ettt
E. SCOPE AND METHODOLOGYcoccoouiiiretiieeeeinteeeieceiesie e
F. ORGANIZATION ...ttt e

II. BACKGROUNDooooiiiiiieee ettt et aense e s

A. MARINE CORPS INSTITUTEcoccoooviiieieieerieeeetee e
B. CURRENT SYSTEM OVERVIEW _.........coooiiiiiiiiiiiee e
C. NEW SYSTEM ANALYSIS AND DESIGN EFFORTccccovinnne.
1. Information Engineering Methodology (IEF)c.cocooeiiinnnnn..

2. Technology Architecture Planningcccoocoiiiiiniiniiniiniiie e

3. Data Modeling...........cccooeeviiiuiieiiiciieeeeeeee e

‘4. Proof-of-Concept Prototype............ocoeveviceioeieiieieeeeee e

a. Process Spectfications..............cccevieeeeeiieenieeceee e

b. Data Flow Diagrams (DFD).........cccccovviveimiineieeenreeiene,

c. Database Schemaccooooioiioieieeee e

D. CHAPTER SUMMARYooititiiire ittt ettt

III. GUISTANDARDS ...ttt ettt ettt e

A. EVOLUTION OF USER INTERFACEScccceocciiiiiiininincenecrecincenns
B. ORGANIZATIONAL GUI STANDARDS........cooiiie et
C. STRUCTURE GUIDELINES ...ttt

VAW N
§ , '
=
1/,]

Pop-up MenUS........ooi e
D. INTERACTION ..
1. Command BUtLONS.......oo. e eeeeeeeee e e e e e e e ee e eeeaeae

c. Grouping Command Buttons.cccceceeioeeiiiiiieiineee
d. Default Buttons.................cooooeiiieeie e
2. Option BULONS.........cocoiiiiiiiice e e

vii

3. N K BOXKES uuuueiiieeriuereererraessssssessnsesessesssssessssesessssnsessssssssesssssssssnss 31

4. TeXE BOXES ciruuueeiiiiiiieeeiieeiee ettt ettt et st b s saarasns 32

5. LISt BOXES cuvieeeuiiiiieeeceteeteerieeeeeitteesessiattestsecsssasssss s sabss e sbaeeens 33

E. PRESENTATIONcoeiiiitiiententecteeeeeececttsnice et acsas et 34

1. Developing a Home Base.......cc..cceevuiiroiiiiiiiiinnicniinniiciinc e, 34

2. FLOW Of VIBW...utiiiiiiiiiiiiietecneeeeeiieeesnine et iat s e sanseecsnenas 35

3. Grouping Data........cccceeeviiiiinniiriiiiiiiine it 36

4. FOnt SEIECHOM. ...ciiiiiirruiiriieeeceeciet ettt s s 37

5. USE Of COLOT..cimiiiiiiieiitiecieeceee ettt et ebe s 38

F. CHAPTER SUMMARYcoociivttitintnneeniiticticsii et s sascsas s 39

IV. IMMEDIATE ASSIST PROTOTYPE.......ccoeioeiiiiiieciticninecessrieeteeeeeans 41

A. IMMEDIATE ASSIST APPLICATION OVERVIEWccccovciuninnnenee. 41
1. Designing an Application for the Student Services Department

(SSD) CIETK .ottt tnsascs sttt e estsaese e se et aenees 41

2. Proving the CONCEPL.......cccevieirieuecririiiiiiiictieii e v 42

B. DEVELOPER/2000 ENVIRONMENT OVERVIEWc.ccccceiirunnennnnne 43

1. BacKEIOUN ..ccouieeniieireeiieeiceeeteeeseeseeeie e et eatveeeae e e saeessnsaessaaas 43

2. Developer/2000 BasiCseceeueeeveeeerueerieneeenseeseeenseesseeseeesseesseenees 43

2. INTOdUCHION ..ottt 44

b. ENVITONIMENL.....eeerviieiireieeeeeeeeetinciateneeeseseeestaeeseesseesessaennne 44

Co FOIMIS .ottt ettt 46

. BLOCKS...eiciiieeietieeees ettt s 46

€. TIIZEOTS. .ottt e 47

. CANVASES...c.veiriiniriiiriiie ettt sant e s 48

g. Structured Query Language (SQL)...ceovreeveeececereerreeceeennen. 48

C. PROTOTYPES AND GUI DEVELOPMENT........ccccocovmiiiiiniiiiiiccnicnee 50

L. PIOtOTYDES vttt ettt st st seane 50

2. GUIENVITONIMENEuuvtiimieniierniereenieeeeseesenteesseesssscssssessesssessssnsasas 53

D. APPLICATION DESIGN AND IMPLEMENTATION.......c.cccceeeuennucencne. 54

1. Process for Designing the Application.........cccccceuieviiiveeencciiuecnneense. 54

2. OPeNINg SCIEEIM ...cccviiiueeiniiiirieeieieesreessie e csssessstesessasessassssssessnsses 55

3. Student Search.........cociiuimiererceie ettt 55

4. Enrolling a StUdent.......cccueeueieveiiiemnucnnniiieiiiciienieeecneeteseseeesesanees 56

5. Course Catalog/ENtOlmMENntceeevereenereeeeieeniieeseeeseeeennsnneeessenas 57

E. CHAPTER SUMMARYcoiriiiiicicestcnteinsieiencetssteseseenseessessteseenaens 59

. V. USABILITY TESTING......ootiiieiieiiieteieiietctt ettt sttt 61

A. COMPONENTS OF A USABILITY TEST ...coootiiieineneeeeeiie e 61

1. Tvies of Usability Tests.....oeeicieeeeeeeeiieeeeeiiieeeeiececcee e eeevevesee e 61

a. Exploratory Testing........cceeeeeceiriueiinorrinceeeeeeeeeeeeieeeeae 61

b. Assessment TESNG ..ccceeeeecinruriiiecenreniiiinsissreeisennrecsnesssenne 62

C. Validation TeStiNgceeereeeecrmreerrncensaseessnsersissaeeesssvsesennsecens 62

d. Comparison TESHINGcceceeererieniencereeseiesaessensuiesacssiesesssessesnes 63

2. TSt SELNES . eerueerereerreeerrreaareeesteeesaeeesssesseransusesseesecssesesssosensessssasranes 63

a. Simple Single ROOMcccvveereeerueenerrercneesereemceneesseeeeesceeecne 64

b. Modified Simple Single ROOM.....ccccevnviiruiivniininiiniiiinnnne. 65

¢. Electronic Observation ROOM........cccccervvviinnrinurinsininunnianenns 66

d. Classic Testing Laboratorycccceveerevereceennmnsuersserueeseennens 67

3. Test Personnel and ROIEScoceienevuiiniiiniineiniinnieciiriniinrcccanenes 68

a. Test Monitor/AdmMinIStrator.......eeueeeeceecveroreeraeecsaesesscsesacee 68

D. Data LogEer...ccooueeeeerreeeeneeeecntecteneeeneteceneessseecesaesseaseseeans 68

C. Equipment OPerators........ccocvvcuervinnirincenininiiiniciiennrinaiceseens 68

d. Technical EXPerts.......cocovueeniinuicrensicnneiniinnecnnnicieeececenns 69

B. DEVELOPING THE TEST PLAN....c..ccrviiiiirtinictntiinnee et snecsenes 70
C. SELECTING TEST PARTICIPANTSutiiiiriniininicntrenitecceensresnscsnnees 72
D. CONDUCTING THE TEST ...ccccteitiriiiniiiniinniecinnenrenaccsessessessssenss 72
E. SUMMARIZING THE TEST DATA ...ccccovuiiivnniiniiininnrecesvessncsacennes 73
F. CHAPTER SUMMARYcooiiiiirteecectenrreeeecneesteceneescsssssessneesnsssenssece 74
B 6 T (BB (0 75
A. LESSONS LEARNED.......cccorteiiiiniicteniiiiiitisnes e cesaesaessnesssessesens 75
1. Development TOOIS.....cccveeerierreiernererneeinieeneecsneeecseeesssseccsnsossasssaees 75

B DEIPNL cccvveieieitercriee ettt et e et et s s sareecneeses 75

b. Developer/2000......ccccouiinuiiiiniiicioneiiniirnmnenneeennnnerenneens 76

2. Prototype Developmentcouueviviiienuiininiinninieinnnnnisnnnneinnseenans 77

a. Process Modelingcccceeeeruirerrnenrreeinneeeeccruneeeencneencsssenens 78

b. Data MOdElingccccevveeeeneerreecerreecuesseneceessresscneenessnnssseens 79

c. Rapid Application Development (RAD).......ccoovvevvuvercreeccunnne 79

3. USability TSN .uceveeeureereeerreeiecreeeeenneeneeeeesseessseeessesssessessssossesses 80

a. Developing the Test.....cciviiiiiiiininiiicniiiiniininencreccneecnens 80

b. Conducting the Test...cccceervvierrieerieerreeeeereeneeescreeceresasseeeneas 81

B. FUTURE WORKcooteieiiiiriteeceetsstentieteescetesaeseesseeseeecneeseessaseessecsasseones 81
1. SeCUTItY FEATUTESuvveeerrreeeeecreenariieccrrrteaesneeesasneeessssssasessssessssneconns 81

2. EXam Management........cucecveeerieeenieeneeenenaeeeseeeenseecssencesnecsssosssses 82

3. Diploma and Certificate ISSUEc.cccvverrurerrerereeecreeeeeesrererecseessceneenns 82

4. TransCript GENETALION «.cvuerceerreeecrerueiereerreenteeeeconeesseeeeseesseessasoseecees 82

S. Program Enrollment......ccoccviireieeeenreiinecreiieceseneeeeneenseneecseeeesesnienns 82

6. LOGAIS CommuniCation.......ccceveeeereeeesueseersvessaeeessesseeseseessesssseseras &3

7. HEp DESK...ciiiiiieeeceeeteec ettt it et eecmeeenereees et e e e s e e sonens 83

C. ACHIEVEMENT OF RESEARCH OBJECTIVES AND QUESTIONS......84
D. CONCLUSIONS ...ttt ccrteneteteeenteseeessenenessaeessseesssssseessensssssassses 86

APPENDIX A. SCREEN SHOTScoiriiniiiiiiitenintineestteseieiesessesssseenneesuassnes &9

APPENDIX B. MCITEST PLAN....ccccciiiiiiiiiiiiiiiniintrecsceraeeececeneeeeneesesseecssenenans 103

APPENDIX C. USABILITY TEST RESULTS FOR THE MARINE CORPS

INSTITUTEottt sttt ettt seeceneceneeeueesssaesssssssssesssssssssmnessassssenns 109

APPENDIX D. DEFINITIONS AND ABBREVIATIONS........cccoorttrvueeeceererrneeenns 115

LIST OF REFERENCES.......ccoiivttiniiiittiiniiicieeenaeneseeesosanssssacessesesssssssssesssassees 117

INITIAL DISTRIBUTION LIST...cciiiiiriiiiiiiiiiicecteeeseneeeosvesenauenresessvesnesssseseens 119
X

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support of the Marine Corps
Institute in funding the travel and equipment purchased during the research phase of this
thesis.

xi

L. INTRODUCTION

This chapter provides information on the purpose and content of this thesis.
Section A discusses the background of the Marine Corps Institute (MCI) and the
modernization project designed to update their Information System (IS). Section B
describes the objectives of this research. Section C presents the research questions that
will be explored. Section D discusses the scope and methodology of the thesis, and

Section E describes the organization of the thesis.

A. BACKGROUND

The Marine Corps Institute (MCI) was established to "develop, publish, distribute,
and administer distance training and education materials to enhance, support, or develop
required skills and knowledge of Marines and to satisfy other trail.ling and education
requirements as identified by the Commanding General, MCCDC;' (MCI Mission, 1997).
To accomplish its mission, MCI is organized into seven functional departments: education
and operations, student services, information management systems, occupation specialty,
professional military education, production, and logistics.

The mission of the student services department is to support the enrollment,
grading and management of the Marine Corps distance education and training programs.
In support of its mission, the student services department employs an automated
information system (AIS) to automate the actions required to support a student in the
MCI correspondence program, maintain student records, and produce necessary

management reports. The automated system, known as the Marine Corps Institute

Automated Information System (MCIAIS), is a legacy system developed in the late
1970's. It runs on a Hewlett-Packard 3000 mini computer running the MPE/iX operating
system. MCIAIS is written in HP proprietary language "Transact" and accesses a Turbo-
IMAGE hierarchical database. As is typical of many legacy systems, MCIAIS suffers from
many shortcomings:

e It has over 110 "spaghetti coded" programs that are difficult to maintain,

modify, and upgrade.
e It does not have underlying data or process models.

e The programs have poor functionality, no statistical analysis capability, and

limited "ad hoc" query capability.
e It utilizes a "closed" non-relational database.

e It does not support Graphical User Interfaces (GUI).

In response to these shortcomings, MCI initiated a modernization project to
redesign MCIAIS using "open" system architecture (both hardware and software). In
addition, MCI is also reviewing and redesigning the business processes to better support
its mission and current advances in training and education. MCI contracted with the Naval
Postgraduate School to perform an analysis and develop a business process reengineering
evaluation and migration plan proposal. A team of students was selected by Dr. Magdi N.
Kamel, Ph.D. to conduct the evaluation and prepare the proposal.

This thesis documents the development of a functional prototype based on the

daily activities of the Student Services Department of MCI. The prototype was

constructed using established Graphical User Interface standards in a Rapid Application
Development (RAD) environmént. The prototype was then subjected to usability testing
to validate the functionality of the prototype.

The research and development was conducted from August 1996 through August

1997. The complete project report is available as the following two technical reports.

e NPS-SM-97-001: Analysis, Design, and Prototype Implementation of a
Contemporary Information System for the Marine Corps Institute, Preliminary
Report (Kamel et al., 1997)

e NPS-SM-97-006: Analysis, Design, and Prototypé Implementation of a
Contemporary Information System for the Marine Corps Institute, Final Report
(Kamel et al., 1997)

Other Naval Postgraduate School theses that cover related aspects of the

modernization project include:

e Data model design: A Relational Database Model and Data Migration Plan for
the Student Services Department at the Marine Corps Institute (Slaughter,
1997).

e Architecture model design: A System Architecture and Migration Plan for the
Student Services Department of the Marine Corps Institute (Evers Jr., 1997).

e Process model design: A Business Process Model and Reengineering Plan for

the Student Services Department of the Marine Corps Institute (Baden and
Peters, 1997)

B. SCOPE, LIMITATIONS AND ASSUMPTIONS

The modernization team efforts focused on four primary areas.

¢ Conducting a thorough review of the business processes and developing a
process model that graphically portrays the organization.

» Developing a conceptual data model and associated relational schema.

(V3]

e Developing a technical architecture and migration plan in order to allow MCI
to transition from a closed non-relational system to an open client/server-based
Relational Database Management System (RDBMS).

e Developing a proof-of-concept prototype.

This thesis deals with the identification of GUI standards, prototype development
and usability testing. Successful prototype development for the immediate assist clerk of
the Student Services Department at MCI, requires the integration of the process model,

data model and business rules developed by other team members.

C. OBJECTIVES

The objective of this research is three fold:

e Development of GUI standards for MCI,

e Development of a proof-of-concept prototype based on the functions of a
selected segment of the Student Services Department, and

e Validation of the prototype via usability testing.

D. RESEARCH QUESTIONS

The primary questions to be answered by this research are:

e Can a clear set of GUI standards for the development of a series of integrated
applications be identified?

o Can a proof-of-concept prototype based on the identified GUI standards be
developed based on the process and data models created by the NPS project
team?

Subsidiary questions answered are:

e Can an object oriented visual-based application development tool be used to
generate a prototype using the GUI standards developed for MCI?

e Can usability testing determine whether the prototype meets the needs of the
MCI telephone support clerks?

e Can the process and data models be successfully transformed into a working
prototype demonstrating the functionality of the proposed RDBMS?

E. SCOPE AND METHODOLOGY

To fulfill the objectives of this research, a literature search is performed to identify
established GUI standards. (Weinschenk and Yeo,1995) provides a format for using
components in a consistent fashion. Application of the techniques described in this text
results in the establishment of a set of standards for MCIL.

A proof-of-concept prototype, designed to reflect a selected segment of MCI’s
Student Services Department (SSD), is developed using a RAD concept. This application
is based on the process model designed for MCI and interacts with the data model
constructed for this project.

Rubin reveals a clear an concise method for preparing for and the executing
usability testing to validate the RDBMS and the RAD prototype. Usability testing of this
project is conducted following the guidelines of (Rubin, 1994).

This thesis builds on the premises of the three previously mentioned efforts. The
technical architecture is designed to support the implementation of the prototype and a
series integrated application design efforts that follow.

Specifically, this thesis conveys the efforts of identifying GUI standards,

developing an application embedding these standards into a prototype, and then

conducting usability testing to quantify whether the application demonstrates the

functionality of the process and data models developed.

F. ORGANIZATION

The approach used to prepare this paper is predicated on identifying GUI
standards, building a proof-of-concept prototype based on those standards, and verifying
this prototype with usability testing. This thesis is organized as follows:

Chapter II presents an overview of MCI, its current legacy system, problems
associated with the this system, and the new system analysis design efforts conducted by
the NPS thesis students.

Chapter IIT introduces GUI standards. These standards are categorized into the
functional areas of Structure, Presentation, and Interaction. The chapter describes the
proper use of components and makes recommendations for their employment in
application design.

Chapter IV provides an overview of the Immediate Assist prototype, the
development tool used to generate it (Developer/2000), background on prototyping, and
discusses the approach used by the NPS project team.

Chapter V introduces usability testing, its basic components, testing environments,
and testing personnel along their responsibilities. The chapter also discusses the compiling
of the completed data and preparing test results.

Chapter VI presents lessons learned, recommended future works associated with

the prototype, and conclusions associated with the objectives of this research effort.

II. BACKGROUND
The purpose of this chapter is to familiarize the reader with the Marine Corps
Institute (MCI) and its information system. The chapter is organized as follows: Section
A discusses MCI and its charter. Section B overviews the current information system.
Section C identifies the components of the new system analysis and design efforts, and

Section D provides a summary of the chapter.

A. MARINE CORPS INSTITUTE

The Marine Corps institute was established to "develop, publish, distribute, and
administer distance training and education materials to enhance, support, or develop
required skills and knowledge of Marines and to satisfy other training and education
requirements as identified by the Commanding General, MCCDC. To complete this
mission, MCI is organized into six functional departments: education and operations,
student operations, occupation specialty, professional military education, production, and
logistics.

MCI is a large and dynamic organization. In order to provide education and
training to Marines, MCI has focused on three main areas: developing educational
materials, administering the materials, and maintaining logistical service related to gettir_ng
the materials to the students. Recent changes in Marine Corps policies have increased the
number of students enrolled in courses. The student operations department and the
administrative requirements of its automated information system (AIS) is the focus of this

chapter.

B. CURRENT SYSTEM OVERVIEW

The student operations department mission is to support the enrollment, grading,
and management of the Marine Corps distance education and training programs. In
support of its mission, the student operations department employs an AIS to automate the
actions required to support a student in the MCI correspondence program, maintain
student records, and produce necessary management reports. The automated system,
known as the Marine Corps Institute Automated Information System (MCIAIS), is a
legacy system developed in the late 1970's. It runs on a Hewlett-Packard 3000
minicomputer running the MPE/iX operating system. MCIAIS is written in Hewlett
Packard (HP) proprietary language "Transact" and accesses a Turbo-IMAGE hierarchical
database.

Operators currently interface with the database via a series of DOS character-
based applications operating on top of Microsoft’s Windows 3.11 operating system.
These 110 “spaghetti-coded” applications interface with the Turbo-IMAGE database,
providing users with data retrieval and display as well as limited data manipulation
capability. As is typical of legacy applications, their use is not intuitive, requiring
substantial training time for new users. In addition, these programs were not designed to
integrate with other applications. No statistical capability exists to examine raw data or
perform ad hoc queries. Applications are difficult to understand. As a result it takes
several months of on-the-job training for an operator to become proficient enough to

provide customer service without the aid of a supervisor.

No data model of the current database exists. Adding new entities or changing the
database to support new attributes related to existing entities would be difficult, if not
completely impossible, due to the current design. Processes that the database currently
support have changed or been totally eliminated. @ The database administrator is
constrained by the requirement to retain useless data, while data the organization wants to
retain are being ignored due to the inability to store it.

Marine Corps directives for all Marines to enroll in MCI courses to enhance their
personal and professional development has resulted in an overwhelming amount of new
data for MCI to maintain. In addition, this policy also resulted in a new requirement for
MCI to provide accurate and timely data to promotion boards. These boards review each
candidate’s record related to past and current performance related to MCI courses. Not
only must MCI develop and maintain the courses, it must administer the exams and record
the results to external agencies. As a result, the MCIAIS system is stressed almost to the
point of failure.

Customer complaints regarding the mability to get materials ordered and delivered
have steadily increased. The inability of MCIAIS to provide accurate data on stock
quantities or to generate certificates and diplomas in a timely fashion is becoming a larger
issue to the organization. Marine Mail, a program where Marines can directly contact the
Commandant, has routinely included a large number of complaints directed at MCI and its
inability to provide the support needed. Most of these complaints center on customer

service issues and are a result of the shortcomings and limitations of MCIAIS.

Recognizing these emerging changes and the limitations of their current AIS, MCI
contacted the Naval Postgraduate School (NPS) and requested an analysis of the current
system and a recommendation related to modernization of the current system using

contemporary architectures, methodologies, and tools.

C. NEW SYSTEM ANALYSIS AND DESIGN EFFORT

Five students from the ITM curriculum were selected to review MCI and the
supporting AIS. The focus of the team was to define the processes which encompass
MCI, analyze the existing architecture to determine if it could support MCI and its
potential growth, develop a new relational database model in support of the required
processes, and develop a Rapid Application Development (RAD) proof-of-concept

prototype to demonstrate the success of the data and process models identified.

1. Information Engineering Methodology (IEF)

To accomplish its task, the project team adopted the Information Engineering
Methodology to analyze the new system. Information Engineering (IE) is a methodology
developed by James Martin (Martin, 1990). The methodology is best represented as a
pyramid having seven basic stages: Information Strategy Planning (ISP), Business Area
Analysis (BAA), Business System Design (BSD), Technical Design (TD), construction,
transition, and production. The pyramid is also divided horizontally. Figure 2.1 depicts
the IE pyramid. The left side represents data and the right side relates to an activity’s
tasks. The horizontal division within each of the stages is useful in dividing the required

tasks among members of the development team. For example, the left, or data, side of the

10

pyramid is associated with the data modeler’s tasks of identifying data subjects and entity
types, modeling the relationships, and normalizing the entity records. Activity tasks, such
as business area identification, process decomposition, and matrix development, fall on the
right side. To identify the subsystems and their boundaries the process modeling team
utilized this IE structured approach.

Information engineering is made practical by the use of a Computer Aided Systems
Engineering (CASE) tool. It is important to choose a tool in which planning, analysis,
design, modeling, and construction modules are integrated and share the same
encyclopedia. The metadata in the encyclopedia resulting from the ISP study is a valuable
asset and should be updéted peniodically. As the strategic goals or objectives of the
business change, the information in the encyclopedia should also be changed. This allows
the business model to remain current and available for periodic review.

The portions of the ISP and BAA stages of the information engineering
methodology that pertain to activities include enterprise level analysis of MCI, business
area analysis of SSD, and a To-Be information system model.

Enterprise-level analysis provides an overview of the organization. This overview
is used by the top level managers and reengineering teams to decide how to proceed with
a reengineering plan. The overview should not be too detailed. It is used to establish a
broad overview in a short time. Detail will be added later during the business area analysis
stage.

The top level might be thought of as being like an author planning a

book and creating its table of contents. He surveys the overall contents of
the book and divides it into parts and chapters. He decides which chapters

11

/N
ISP

BAA

SN

BSD
e
TD
_ |Construction

e “Transition "

e Production 05
%\/ P\G{N‘“e

Figure 2.1 Information Engineering Pyramid about (Martin, 1990).

he should write first. Similarly, at the overview modeling stage he scopes
out the overall structure and information needs of the enterprise, divides it
into areas, and decides which area should first be analyzed in detail
(Martin, 1990).

The overview information is stored in the CASE tool encyclopedia so that it can be
updated over time and used for further analysis as detail is added. This CASE tool
provides the functionality to include future growth or to alter the model in the event

additional data becomes available at a later date.

12

To create an overview for the enterprise, data and process information must be
integrated with the business strategy. Recall that the information engineering pyramid was
divided horizontally with data information on the left and process information on the right.
Thus an overview of the enterprise data is created when the data model information and
the process model are mapped with the strategic information together along with its
matrices. The matrices are then clustered to define the business areas. There are three
steps to this process: (1) identification of organizational units, locations, functions, and
entity types, (2) matrix analysis, and (3) identification of business areas.

As a result of clustering, seven business areas are identified for MCI: Personnel
Administration, Ceremonial Support, Program and Course Management, Program and
Course Development, Student Service Support, Warehouse and Distribution, and
Information Systems management.

The resulting Process Specifications and Data Flow Diagrams (DFDs) will be the
key components used by the prototype development team during the application design

and implementation phase of the project.

2. Technology Architecture Planning

This area of integration represents specifying an architecture of future hardware
and software platforms. Options ranging from maintaining the current hardware to
upgrading existing hardware or completely replacing the current hardware must be
considered. Spewak provides a four step guideline for reviewing and evaluating the

technical architecture.

The first step is to identify technology platforms and principles. This step
establishes the guidelines for the entire architecture development. The principles that will
govern the development of the technology architecture must be based on trends and
directions of the Information System (IS) industry. A literature survey is conducted to
ensure critical industry options at least receive due consideration. After the principles are
defined, the team compiles a list of the potential technology platforms for consideration.

The second step is to define the technology platforms and its distribution. With
the principles of development defined, the team develops its strategy for the distribution of
the applications and data. All business locations affected by the architecture is identified
by location and function. The physical and conceptual location of the data is also
determined in the distribution plan. Finally, a definition for the configuration of the
technology platform is developed. This conceptual architecture must address the
conceptual workstation (user access), the conceptual enterprise network (input/output,
storage, and telecommunications), and the business systems architecture (implementing
and maintaining applications and data of the enterprise).

The third step is to relate the technology platforms to the applications and business
functions developed in the earlier components. In the planning guidelines above, the
importance of linking the EAP to core business functions is discussed. In this extension of
that philosophy, the defined technology platform must be related to the business functions
that will use them and to the applications architecture that requires that technology.

The fourth step in technology architecture is to distribute the technology

architecture. The documents defining the architecture are prepared in a clear, useful

14

format, then presented to executive management. The team discusses the potential gains
and risks to the organization, data integrity and security issues, and implementation
concerns. Briefings raise new issues for the team which must be considered for possible

revision of the implementation plan. (Spewak, 1992)

3. Data Modeling

This effort consists of the construction of a data model which accurately captures
the attributes of each entity identified by the process modeling team. An accurate data
model depicting a developed database would allow the administrator the ability to adapt
the database should future requirements dictate. With the utilization of a modeling tool,
changes can be made and can instantly provide the required documentation needed to
manage the new database. This allows for the synchronization of the database and model,
with little or no disruption to day to day operations. Close interaction between the data

and process modeling teams is critical.

4. Proof-of-Concept Prototype

Aftel.' the process and data models have been constructed the application design
and implementation effort can commence. Close integration of the application design
team, the process modeling team, and the data modeler throughout the development cycle
is critical. The development will combine the efforts of business process reengineering,
technical architecture design, and the developed data model, combining them to produce a
proof-of-concept prototype based on the functionality needed for the SSD customer

support clerks for MCI.

15

The three most important components necessary for the RAD process are the
process specifications, data flow diagrams, and the database schema. The process
specifications provide the designers with a detailed document that describes the tasks to
be created and embedded within the application. The DFDs provide a visual abstract,
which the designer can use as a roadmap, to show where to get the data needed for the
task and where to place the output. The database schema is the data modeler’s tool for
logically depicting the relationship between the entities described by the process modeling

team.

a. Process Specifications

Process specifications describe the decision making logic and formulas that
the application designer must use during the creative process of application
implementation. The process specification should reduce the ambiguity of the task at
hand, provide a precise description of what is to be accomplished, and validate the system
design upon completion.

There are several types of process specification formats. The most
commonly accepted are Structured English, Decision Tables, and Decision Trees.
Capturing the task and transforming it into a sequence of events and precise inputs and
outputs can be very involved. This effort is the most crucial part of the team’s design
effort. If the task is not completely defined or if a single component is overlooked, the

result can be catastrophic.

16

b. Data Flow Diagrams (DFD)

Data flow diagrams illustrate data flows in and out of the system as well as
the processing done on the flows. They also depict the distribution and storage of data.

DFDs function as a roadmap for the application designer.

¢. Database Schema

The database schema defines a database’s structure, its tables,
relationships, domains and business rules. A database schema is a design,
the foundation on which the database and the applications are built.
(Kroenke, 1995)

The database schema provides the application designer the information
about the data available to the application. Specifics about how the data reflects the entity
to which it belongs; how it is designed related to other entities; and the specific values
described by the business rules of the organization are contained in this document.

To demonstrate the effectiveness of the process and data modeling teams, a
RAD prototype is produced. This prototype is constructed using Graphical User Interface
(GUI) technologies and incorporates a set of modified standards specifically designed for
MCI. The new standards are incorporated into the future applications. The integrated

programs will improve the users ability to learn new applications, make their introduction

less problematic, and improve the proficiency of the users.

D. CHAPTER SUMMARY

This chapter discusses MCI’s charter and some of the problems, political and

external, that face the organization. To analyze the current system and identify potential

17

options aimed at migrating MCI to a new information system, a team of students from the
Naval Postgraduate School has been established.

The MCI thesis team addresses the areas of technical architecture, business
process reengineering, data modeling in depth. These areas are to be integrated and used
as the basis for development of a selected features prototype to demonstrate the
functionality of an RDBMS developed for MCIL

This thesis concentrates specifically on the area of GUI standards, GUI design,
prototype generation, and usability testing associated with the proof-of-concept prototype

developed and implemented for MCL

13

II1. GUI STANDARDS
Developers of Graphical User Interfaces (GUI) benefit from having a defined set of
standards to use during the design effort. This chapter describes a set of guidelines for
developing Graphical User Interfaces is organized as follows: Section A discusses the
evolution of interfaces. Section B describes the need for developing organizational GUI
standards. Section C discusses structure which is the framework used to create the
interface. Section D deécribes how the user interacts with the application. Section E

discusses the presentation of data, and Section F summarizes the chapter.

A. EVOLUTION OF USER INTERFACES

With the invention of modern computers, early applications and associated
interfaces have been aimed at the computer programmer. Consequently the use of
computers was limited to those who had an ability to develop complex series of
instructions in a language specifically developed for a computer. Programmers would
generate instructions with cables arranged on wire boards designed to move electronic
values from register to register through complex adders and subtractors until the
mathematical functions they had logically constructed provided the manipulation of the
data into a form they wanted. Often the results were either simply displayed on a numeric
panel or output in a plain-paper format.

With the advent of punch card technology and standardized compilers, the
instructions devised by the programmer became portable. Programmers were able to

develop standardized applications that are easily used but still understood only by

19

computer professionals with knowledge of high-level programming languages. Advances
in these programming languages allowed standardized reports to be consistently produced
in a format useful to the users.

Since there was a requirement to provide a direct interaction between a user and
the computer, new real-time interfaces were developed. This ultimately led to the
Cathode Ray Tube (CRT) display providing monochrome character display capability with
a keyboard attached to allow operator interaction with the processor. Programmers
familiar with the applications were satisfied with short prompts and blinking cursors to
notify them that the computer was awaiting an input. Since this approach was not obvious
to those not familiar with the specific application, a need for developing more consistent
sets of responses and prompts became a requirement in interface design.

With the wide acceptance of the Personal Computer (PC), more users were
utilizing the applications for a wide variety of computing requirements. Word processing,
spreadsheet calculations, and some simple database processing were the primary
applications available for the PC. The introduction of Apple Corporation’s icon-driven
desktop computer drastically changed man-computer interaction. Users now had a
graphical interface with which to interact. With the release of Microsoft’s Windows
operating system, hundreds of new applications became available for users, ranging from
computer games to graphical presentation applications to visual computer programming
tools.

Today, the Windows-style interface is widely accepted among users, and its look-

and-feel is the industry standard for application development. GUI, although a tremendous

20

improvement over character based interfaces, still requires a user-centered approach
during its development. The standardization of data presentation, combined with a
consistent method of interacting with the computer and consistent approach in structuring
the application, has improved the design efforts and ultimately improved the quality of the

applications available to the user today.

B. ORGANIZATIONAL GUI STANDARDS

A GUI environment has numerous advantages over a character-based interface. If
designed properly the applications should be easier to learn, easier to use, and would
improve operator performance and efficiency. Consistency is the cornerstone of the GUI
design success. Components, screens, and menus should be used in the same manner and
have the same functionality throughout the application. With an established set of
standards, programmers will be able to develop a series of applications that not only look
and feel the same, but make complementary applications more easily assimilated into the
daily operations.

The GUI standards outlined in The Guidelines for Enterprise Wide GUI Design
were utilized during the development of the prototype for MCI (Weinschenk, and
Yeo0,1995). These guidelines convey a great deal of expertise in designing user interfaces.
It is highly recommended that MCI’s project development team utilize these standards in
conjunction with those listed in the following sections during the development of their
future applications. The guidelines address three distinct areas of the design process:

structure, interaction, and presentation.

21

Structure refers to the framework used to create the interface. It addresses
guidelines related to the design of windows, dialog boxes, and menus. Additionally, it
covers proper use of pop-up/drop-down windows and the relationship between menu-bars
and command buttons.

Interaction refers to the user’s communication with the computer. The user and
computer communicate through the use of various controls. Choosing a control is not a
haphazard process. Selecting the right control requires the designer to completely
understand the task to be performed and how the user needs to interface with requisite
data. Interaction guidelines address the proper use of list boxes, text boxes, spinners, etc.

Presentation refers to how data is displayed on screens and windows. This
guideline instructs the developer on the preferred methodology to organize the layout of a
screen. Additionally, this section demonstrates the proper way to create the flow of focus,
vertically or horizontally, into screen design. Appropriate display of information can make
a major difference in how useful the user perceives the interface to be.

Elements of structure, interaction, and presentation must be merged together into
the application design effort to provide an interface that the user can understand.
Successful screen design consists of developing a consistent pattern of using the
components described in the previous paragraphs and overlaying them onto supporting
object code that completes the defined tasks identified in the process model.

The purpose of developing GUI standards is to provide the in-house programmers
with guidelines on how to consistently utilize visual components, develop logical screen

flows, and improve the user’s ability to quickly comprehend new application designs.

22

—

Interface design can have a major impact on the usability and usefulness of an application.
A well thought out and executed design increases the user’s understanding of its
functionality and improve performance. The following sections recommend the guidelines
outlined in (Weinschenk and Yeo,1995) and annotate specific recommendations that apply

to MCI'’s application development effort.

C. STRUCTURE GUIDELINES

This area of GUI standards describes the way the application is presented to the
user in the form of windows, dialog boxes, and menus. It allows users to interface with

the application.

1. Windows

There are two options for window formats. Tiling or Cascading (Figure 3.1).
Tiling windows are windows that are designed to be shown simultaneously. Cascading
windows are designed to display on top of an existing window. Cascading windows are

recommended because they allow the user to focus on the active window. Ofien, the task

Cascading Windows Tiled Windows

Figure 3.1 Cascading or Tiled windows.

23

requires a sequential series of actions to be completed. Under these conditions, the
cascading windows work best. If a sequential flow is not required, and cascading
windows would cover up essential areas of other screens, then the tiling method may be
used.

Sizing of the windows is very important. The developer must avoid having the
user scroll horizontally since it is not a natural viewing process. Using a larger window or
breaking the information into several screens provides an alternative to horizontal
scrolling. When supplementary windows are opened to expand on data presented in a
previous window, the size of the window should be limited to the smallest size necessary

to present or elicit the information of interest.

2. Dialog Boxes

Dialog boxes are one of the most important features of a GUI environment. By
using a dialog box the developer has a greater chance of ensuring the user enters the data
precisely, understands the sequence required to complete the action, or is warned of
impending irrevocable actions.

There are two types of dialog boxes: modal and modeless. Modal dialog boxes
stop the execution of the application until the user responds to a particular set of actions.
Modeless Dialog boxes do not stop the execution of an application and may be deferred or
even ignored since completion of the action is not required. Modeless dialogs may also be

used to represent continuing work which does not impact the current process.

24

Dialog boxes should contain some visual cue as to the seriousness of the action

that will occur in response to the prescribed message (e.g., red circle for danger or fatal

“$Enroll Note

Fie 3.2 Mod dialog box
actions, yellow for warning and blue for informational actions). Figure 3.2 displays a
modal dialog box designed to communicate information to the user to help in decision
making related to the enrollment of a student into a class.

Command buttons on a dialog box should be limited to OK, Cancel, Apply, and
Help. Placement of the buttons should always be in the same order so users are not
confused and inadvertently activate the wrong button. The default button selection should

always be a non-destructive selection to minimize the possibility of the user making an

irrevocable destructive action.

3. Menus

In order to move between functional areas in an application, developers may opt to
use commands entered by the user or menu options selected from drop-down menus
contained in menu-bars.

Menu-bars are usually grouped by specific areas like File, Edit, Help, View, and

Tool options. For example, a File menu includes the capability to save, open, or close a

25

file. The associated actions are displayed with the first letter capitalized and a hot-key
combination annotated (e.g., Ctrl+O). Care must be used in selecting hot-key
combinations, and industry standards should be used wherever possible to facilitate user
knowledge accumulated from widely used applications like Window 3.X or Windows 95.
For example, Ctr+X, Ctrl+C, and Ctrl+V are used commonly in Windows applications for
cut, copy, and paste, respectively.

Single words are usually used to convey the meaning of actions in the menu-bar
and drop-down menus to avoid confusing the user. Menu-bars must contain a single line
of options so the selection of options is easy and straightforward. The menu-bar selection
should activate the drop-down menu which contains the actions associated with the
specific functionality it contains. Critical items should be placed at the top of the drop-
down list, and similar functions should be grouped together with a separator line to
provide the user a mental model of the grouped actions. For example, under the Edit
segment the options Cut, Copy, and Paste are all related items used to edit text.

Menu options are a primary navigational tool for the user. Time and energy
expended during the menu-bar and drop-down menus planning will be well worth the

effort when end users need to move between the different modules of the application.

4. Toolbars

Toolbars allow the developer to collect frequently used options like drawing and
formatting tools and display them as icons readily available with the click of a mouse. The

developer must use care when creating toolbars to ensure that all the items displayed are

26

actually useful to the user. Toolbars should not be grayed out, and the collection of icons

' performing similar functions should be grouped together in a logical arrangement.

S. Pop-up Menus

Pop-up menus are menus that are displayed through special user ac.tions (eg.,
when the user clicks the right mouse button). Items presented in a pop-up menu should
match the needs of the fuﬁctions in which the user is actively involved. For example, if the
user is involved with text manipulation, the displayed menu should activate items

associated with ‘that section such as a spell checking application or thesaurus.

Action Type Proper Placement
Most frequent and critical Command Button
Fairly frequent and across several screens Toolbars
All actions: frequent, critical and infrequent Menu-bar and drop-
down menus

Table 3.1 Proper placement of actions from(Weinschenk and Yeo 1995).
Additionally, the items present on these menus must be commonly used items and not
obscure or irrelevant functions. Table 3.1 outlines a methodology for determining the

proper placement of actions.

D. INTERACTION

This category of standards relates to the way the operator interacts with the
application. This section will discuss the proper use of command buttons and data boxes

and their appropriate sizing and labeling.

27

1. Command Buttons

Command buttons are the means by which the user causes an action to be
completed. These buttons are the primary method end users select to navigate from dialog
box to dialog box, answer queries posed by the application, and return control back to the
application after it retrieves necessary data from the user. Consideration should be given
to their implementation.

When command buttons are programmed to launch major subfunction or program
module, the developer should also include the ability to initiate this action from the menu-
bar.

Developers should avoid overloading the screen with command buttons. No more
than nine buttons should be placed on a full sized screen. When this number of buttons is
exceeded the user can become overwhelmed and lose focus during the execution of the

application. (Galitz, 1994)

a. Labels

Buttons labels must be clear and concise in describing the functionality of
the action. A directive tone must be used to convey an authoritative attitude to the user to
alleviate confusion. Book title capitalization rules should be used (capitalize the first letter
of all major words). Unnecessary words should be omitted. Industry standards should be
used where actions conform to those of existing applications. Table 3.2 provides a listing
of several widely used buttons and their keyboard equivalents. Figure 3.3 provides an

example of command buttons labeled in a clear directive manner.

28

Label

Action

Keyboard Equivalent

Makes changes and closes
the window

Enter key

Does not make changes and | Escape key
closes the window

Closes the window when | C
changes can’t be made or

canceled

Resets to the defaults, | R

leaves window open

Makes changes, leaves| A
window open

Opens online help H

Table 3.2 Standard labels for frequently used actions, from (Wienschek and Yeo 1995)

b. Button Sizes

Buttons should be sized relative to others in the grouping. If text labels

vary to the point where different sized buttons are required, then every effort should be

made to limit the number of unique sizes in order to keep the display uniform in

Pli Redacted

29

Figure 3.3 Label command buttons with clear directive meanings.

appearance. In the event that only one button is sized differently, the command should be

reworded or the button placed where it does not visually distract the user.

c. Grouping Command Buttons

Command buttons that are functionally and logically related should be
grouped together and bounded with a border. They should be eciually sized and labeled in
a uniform manner to avoid implying that one is more important or critical than the others.
When designing screens, the grouping should provide ample white space in order to set off
the buttons from the text or display boxes. Figure 3.4 depicts a grouping of command

buttons.

d. Default Buttons

Developers should sparingly program default actions associated with
buttons and always ensure that the action associated with the default is a non-destructive
one. Users often hit the enter key and use arrow keys out of habit. Activation of a
destructive nature must be programmed carefully and require the user to confirm the

action prior to proceeding. Consistency in the use of default buttons is highly encouraged.

Figure 3.4 Command buttons grouped together and .sized and labeled consistently.

30

2. Option Buttons

Option buttons are used where choices are mutually exclusive. Choices should be
grouped together and labeled distinctly. The option buttons should be aligned vertically in
order to make the options easily scanned by the reader. The developer should limit the
selection to six items or fewer. Items should be ordered in some logical arrangement such
as frequency of use or alphabetically. Binary conditions should be handled with a check
box rather than a set of option boxes. Figure 3.5 shows the proper alignment and

grouping of option boxes.

3. Check Boxes

Check boxes are used when the options are not mutually exclusive and the user
may wish to select more than one option at a time. The same rules for option buttons

apply for alignment, labeling ,and ordering. Check boxes should be limited to 10 or fewer

per group.

Figure 3.5 Proper alignment and grouping of option buttons

31

4, Text Boxes

Text boxes offer the user the ability to enter data into the application. If the field
is protected and not editable, it should be temporarily grayed out. The developer sﬁould
size boxes appropriately so that the user has an idea as to the size of the expected input.
Where a large amount of data is to be entered and numerous text boxes are used, similar
or relevant data should be grouped together (e.g., first and last name, or address fields).
Fields should be left justified, and the number of unique margins on the screen created by
the differing sizes of text boxes should be limited to two.

Labels should be placed to the left of text boxes and should end with a colon.
Colons should not be used with frame names or column headings. All labels should be left

justified. Avoid placing labels above text boxes. Figure 3.6 shows a data entry screen

| médiat Assist c.reen)

SSN

- {Lieutenant Commander xl

or

Navy

Figure 3.6 Proper alignment of text and list boxes.
32

showing the proper alignment of text boxes and labels.

5. List boxes

List boxes should be used when you want users to select predefined entries to
preserve standardization and integrity in the database. List boxes also may be used as an
alternative to option boxes when ten or more options exits. Where a very large pool of
alternatives exists, consideration should be given to developing filters or subgroups to
reduce confusion and make categorization easier. Often development tools allow for the
use Lists Of Values (LOVs) in order to use codes for the storage of data but have the data
displayed in verbose form. The developer must ensure the size of the list box is large
enough to display all the possible selections, and if a dynamic list box (a type of list box
that allows a new category to be entered in the event an existing category is not found) is
used, that the size of the list box adjusts to accommodate the new entry. List boxes
usually require slightly more space due to their expanding capabilities and should be
placed in a position where they do not obscure other critical fields. Figure 3.7

demonstrates a typical list box displaying ranks of students.

“. | Lieutenant Junior Grade
- |Major General i B
7 |Master Gunnery Sergeant S

. |Master Sergeant '
— MasteiChief Petty Officer ,
o e | Petty Dfficer First Class SEP PNV
- Update Dat] Petty Qfficer Second Class _‘-Ll’t'e"";? . 1

Figure 3.7 List boxes should display all data contained in the field.

33

E. PRESENTATION

This section discusses guidelines for developing a homebase, designing a specific

flow of screen presentation, grouping of data, font selection, and the use of color.

1. Developing a Homebase

Every application must have a screen which functions as the center point of the
application flow. This screen is called a homebase. Since operators use this screen as the
means to navigate to other areas of the application, its construction must be designed to
clearly and logically convey a direction of the flow of the application to the user. The
primary characteristic of a homebase is that users repeatedly return to this screen and use
it to navigate to other areas of the application to complete the associated tasks inherent in
the application. The developer should include command buttons or menu-driven
commands supporting the user’s return to this screen. Figure 3.8 provides an example of
a homebase screen. Note that the user has a choice to select one of the five functional
areas: Enrollment, Student History, Conduct a new Student Search, Order Materials,
Admin Action, or to return to the Main Screen. These functional areas are the primary
functions of the application. Activating any of those command buttons takes the user to a
screen that accomplishes those tasks. Located on subsequent screens is a command

button that returns the user to this homebase screen.

34

i Immediate Assist Screen . . Bi=] i

Figure 3.8 Homebase screen with vertical flow.

2. Flow of View

Screen layout should be created to draw the user’s focus vertically or horizontally
across the screen. If a combination of both techniques is used on the same screen, the user
may overlook data or may be uncertain as to which grouping, if several appear on the
same screen, the command buttons correspond to. Vertical screens are most useful for
data entry since most forms are constructed in that manner. Where data is required to be
entered sequentially, the vertical design technique also works better. Horizontal screen
designs work best when data can clearly be broken into subgroups, but the screen designer

must take extra care in grouping the data and clearly include command buttons inside

35

defined borders with the appropriate text boxes. The developer should use one or the
other technique and avoid combining them on the same screen. As a rule of thumb,
command buttons are placed at the bottom of vertically oriented screens and on the side of
horizontally oriented screens. Figure 3.8 shows an example of a vertically designed

screen. Figure 3.9 displays an example of a horizontally designed screen.

Figure 3.9 Horizontally designed screen

3. Grouping Data

To provide the user with a clear understanding of the data in question, the
developer should use borders that visually group associated data together and use a

descriptive group heading to set it off from other sections of the display. Use of white

36

space to show the groupings or to separate the command buttons associated with the data

is highly recommended. Although borders are recommended, care should be taken to
minimize the unique number of margins created by the groupings. The developer should
attempt to align the borders wherever possible. Figure 3.10 displays a screen with address
and phone number data grouped. Notice how the right margin of the phone grouping

aligns with the right margin of the address grouping. Group headings should not include a

colon. Figure 3.10 presents several grouped data fields for review.

2L

Pll Redacted]’

Figure 3.10 Grouping of associated data and use of descriptive headings

4. Font Selection

The use of a sans serif font is recommended for displays, since it is easier to read

on the screen. Arial and MS sans serif fonts are highly recommended. Use of more than

37

three font weights in application design should be avoided. Although use of eight point
font weight is acceptable, it is recommended that developers use ten point font weight as
the minimum. This will allow development in smaller resolution environments like 800 x
600 or 1024 x 768 pixels per inch.

Use of italics or underlines in conjunction with the font should be minimized.
Bolding should only be utilized for gaining the user’s attention. Colored fonts are not

recommended since a portion of the user community maybe color blind and unable to

distinguish the change in color.

5. Use of Color

Color should be used judiciously. Initial design should start with a gray or light
colored background. Color should only be used to attract the user’s attention. When
used too often, the ability to gain the user’s attention with color will be diminished. When
used, color should be consistent in subsequent screens.

Use of colors should be consistent with accepted norms since they can convey
meaningful connotations (e.g. red should be used to denote danger or critical actions).

Table 3.3 provides a listing of colors and their generally accepted meanings.

Color Meaning

Red Danger, stop, hot, or financial loss
Yellow Warning or Caution

Green Go or OK

Blue Cool

Black Financial profit

Table 3.3 Colors and their meanings in the United States, from (Weinschenk and Yeo 95)

38

Selecting a background color should be done carefully. Often developers attempt
to provide a customized touch by selecting unique textures and color combinations as the
application background. This may create more problems than it is worth if the texture
obscures data or distracts the user. The developer should avoid the use of dark
backgrounds and light text and be aware of blue and red combinations since they lead to

eye fatigue and discomfort (Galitz, 1993).

F. CHAPTER SUMMARY

This chapter provides a short description of the evolution of the Graphical User
Interface (GUI), a discussion on GUI standards, the three primary categories of GUI
standards and their use in application design (structure, presentation, and interaction), and

a discussion on components used to create the interface along with their suggested use.

39

40

IV. IMMEDIATE ASSIST PROTOTYPE

The objective of this chapter is to discuss the design and implementation of a
proof-of-concept prototype of a selected Student Support Department (SSD) application.
It is organized as follows: Section A provides an overview of the Immediate Assist
application chosen for the proof-of-concept prototype. Section B discusses Oracle’s
Developer/2000 front-end development environment used to generate the prototype,
Section C discusses prototyping and Graphical User Interfaces (GUI). Section D provides
the user with an overview of the application design and implementation aspects of the

prototype, and Section E summarizes the chapter.

A. IMMEDIATE ASSIST APPLICATION OVERVIEW

1. Designing an Application for the Student Services Department (SSD)
Clerk

After defining the scope of the project and developing preliminary data and
process models, the thesis team in agreement with the MCI organization decided to
develop a proof-of-concept prototype in order to demonstrate the functionality of the
proposed client/server application system.

Marines assigned to answer phone calls in a customer support roll at SSD
complete a number of tasks supported by the Information System (IS). The most frequent

are:

¢ Entering non-Marine students into the database

41

e Recalling historical data concerning course completion, diploma issue, and
other course-related data

e Enrolling students into courses

e Collecting and entering data for course material distribution

These tasks require the clerks, known as immediate assist personnel, to interact
with the constituent and database to manipulate data via a transaction code-oriented DOS-
based application.

The clerks consult a number of reference books during their calls. These
references are a course catalog, to identify courses and prerequisites, a logbook, to
identifying transaction codes, and a logbook containing logistic memorandums related to
stock levels on hand. The currency of these reference materials often becomes
problematic when copies of the references utilized by the clerks are not updated.

Development of a GUI application, targeted at the daily operations conducted by
the clerks, provides an opportunity for MCI to evaluate the merits of a new application by
utilizing the established benchmark of the existing application as it relates to enrolling

students, displaying course data, retrieving historical data, and ordering course material.

2. Proving the Concept

The purpose of developing the prototype is to demonstrate the capabilities of a
client/server application system consisting of a graphical front-end user application on the
client accessing a relational database on the server and based on the data process models
developed by the project team. The purpose of the prototype is therefore two fold: 1) to

validate the functionality of the combined process and data models, and 2) to show

42

improvements offered by a GUI environment over the DOS-based system currently

employed.
B. DEVELOPER/2000 ENVIRONMENT OVERVIEW

1. Background

Application design and implementation efforts commenced with the evaluation of
development tools. Team members reviewed available tools for ease of use, support of
object oriented programming (OOP) and graphical interfaces, and the ability to interact
with relational database management systems (RDBMS). Architecture concerns, such as
the ability to store and modify applications on the server side and to minimize the
configuration management associated with the large number of clients running the
application, were also addressed in evaluating the tools.

Initial programming efforts were conducted utilizing the Delphi visual application
development tool. In December 1996 MCI decided to conform with Marine Corps
information standards and employ Oracle 7 as their supporting database. After the team
considered the options available, the choice to develop the prototype application with
Oracle’s application tool Developer/2000 was made. This decision made the most sense

when areas of security, interoperability, and integration of features were considered.

2. Developer/2000 Basics

This section will address the use of Developer/2000. An overview along with a

discussion of the development environment and visual components is provided.

a. Introduction

Developer/2000 is an Interactive Application Generator (IAG) that allows
the application developer to specify the look and actions of a program with a minimal
amount of coding. This is accomplished by dragging and dropping components onto a
repository and by linking objects with a few control commands to produce a fully
functional application. This approach supports Rapid Application Develop (RAD) design
concepts by producing an application much faster that using traditional methods.

Oracle’s Developer/2000 provides a visual-based Object Oriented
development environment which allows a programmer to create applications by
associating objects, control, and relationships within a visual environment known as the
Cooperative Development Environment (CDE). The following sections address the
primary objects used in the CDE: Basetable blocks, control blocks, triggers, and how the

developer ties them all together.

b. Environment

The basic interface for building an application is known as the object
navigator. This environment is vehicle for the developer to create the interface with

which the user interacts. The environment consists of:

e Forms
e Blocks
o Triggers

o (Canvases

44

e Structured Query Language

Figure 4.1 shows the object navigator which the developer uses to develop
the application. With this tool, the developer can add a new form, link existing forms
together, create objects known as blocks and program the actions into triggers. This

interface is the component most used by the application designer using Developer/2000.

li“r-‘[_i_l IM_ASSIST_PROG_22_MAY
H-Triggers
£ Alerts
-Attached Libraries

E- Blocks

= Canvas-Yiews

-2l JA_INVOICE

—2] UPDATE_ADDR

—Lil STUDENT_CSE_HISTORY

— 2 STUD_DATA_UPDATE

~ el ADMIN_UPDATE_SEL

- 24 STUDENT_MOVE

2] SEARCH_CUE

- el CONFIRM_EMROLL

; ~ 2| BACKGROUND_SCR

=4 ' T—@.NEW_STUD_ADD_SCH
}Jj ADDRESS_SCR

) CSE_CAT_SCR

L ZZ) CSE_DETAIL_SCR

23] MAT_SSN_CAP

L] CUSTOMER_DATA

-T2 MATERIAL_ORDER

[—Editors:

| [-LOVs .

b = 0bject Broups

Figure 4.1 Developer/2000 Object Navigator.

45

c. Forms

The basic module is called a “Form”. This form is a receptacle for storing
all the items that are linked together to compose the application. Adding new items

usually requires clicking on an Icon and filling in a dialog window.

d. Blocks

Blocks are the basic objects that the developer uses to interface with the
database or to encapsulate instructions that manipulate the data. Blocks provide a
mechanism for grouping related items into a functional unit for storing, displaying, and
manipulating records. Just as tables in the database consist of related columns and rows,
basetable blocks contain related items that display data records. There are two distinct
types of blocks: basetable blocks and control blocks.

The most common block is the basetable block since it is the method used
for connecting with a database. When creating the basetable block, the developer specifies
on which table the block is based, which items are to be displayed, and which type of
component is used to display it. Figure 4.2 depicts the dialog box used to create a block
in the Developer/2000 CDE. The developer has the option to click on the select button in
order to retrieve previously defined tables and canvases which will support the object or
display the relationship.

Control blocks are a collection of triggers or may simply be a grouping of
non-table related items. These Items may be used to structure control flow, reformat the

data for a different display, or to enhance visual presentation of the data. Usually control

46

o o Bl T

B
8
B -
B
B
o
ét

. Generd] taod | MesewDetal |

blocks channel the sequence of events and provide a capability to allow screens and
components to provide functionality even if they are not specifically related to elements
within the data base. For example, the prototype uses a control block to allow the user to
input a SSN which is to be used as the basis for a query. Essentially, control blocks
provide the domain for the programmer to manipulate data.

The combination of basetable blocks and control blocks embodies the basic
concept of OOP. The developer builds the application to facilitate the entry, manipulation,

calculation, or display of the data associated with the object blocks.

e. Triggers

Traditional computer programmers write an elaborate series of instructions

that are executed from start to finish. In OOP the emphasis is on writing small segments

- Base Table: [STUDENT ' Select

Block Name: ~ [STUDENT

~ Select.. |

Lanvas:

Sequence ID':'-'] 23 _

Figure 4.2 Developer/2000 Block development dialog box.

47

of instructions associated with a certain object and designed to be executed in response to
a certain action. These small segments of instructions are known as “triggers” in the
Oracle environment. These triggers are designed to perform a series of functions ‘when
they are activated or “fired.” Triggers may fire when a button is pressed, a list box is
activated, or even if the control of the CPU is passed from one block to another.
Programmers are limited only by their own creative abilities in defining triggers.

Creation of a trigger is associated with a form, a block, a component, or a
prescribe combination of events. The trigger is developed from the object navigator in the
PL/SQL editor. The developer clicks on the block, form, relationship, or canvas that the
trigger is associated with and clicks on the trigger component to create the new item. A
dialog box appears which includes an area to develop the supporting code along with the

ability to test and debug the code. Figure 4.3 displays the PL/SQL editor.

f- Canvases

The visual component that exists specifically for displaying data is known
as a canvas. It is the repository for all items that are displayed for the user. Canvases may
be altered in size, color, and look. Their function is to display data in the items that are

placed on them.

g. Structured Query Language (SQL)
The key component to any application is the ability to define the actions by
writing instructions in some programming language for the computer to execute. The

programming language used by Developer/2000 is Program Language/Structured Query

48

Language (PL/SQL). PL/SQL is basically standard SQL but includes enhanced features
specifically designed for use in conjunction with the Oracle database. For client/server
applications it is important to note that the connectivity between the client and server is
done via SQLNet, and only standard SQL queries will be accepted. The enhancements of
PL/SQL deal primarily with the manipulation of data returned by the SQL query. Figure

4.4 displays an example of PL/SQL code used to find a student record and display it.

TR

| & PL/SQL Editor

R BT

; SET_UII&IDOWI_PROPERTY (FORMS MDI WINDOW, WINDOW SIZE,560,380):

{Set_Window_Property(FORMS MDI_UWINDOW, POSITION,0,0):

'Get_List_Values {'New_Stud add.RANK', 'RANK.RankDesc',
'RANK. Rank', 'RANK'};

Get List Values {'New_Stud add.Grade', 'Grade.Grede',
1Grade.Grade', 'Grade'}):

Get_List Values ('Nev_Stud add.SERVCOHP', 'SVC COHNP. ServCompDesc',
'SVC_COMP.ServComp', 'SVC_COHP'}:

Get_List Values t 'Non_mar addr.State', 'STATE.STATEDesc',

! 'STATE.STATE', 'STATE'): o

Get_List Values {'Cust.State', 'STATE.STATEDesc', i
'STATE.STATE', 'STATE'): _

Get_List Values ('CRSNO', 'CR3.CRSno', i
'CRS.CRSno’', 'CRS'):

Get_List Values (' Student__Updat.e.RANK' » 'RANK.RankDesc', !
'RANK.Rank', 'RANK'): .

Get_List Values t'Student_Update.Grade' ; 'Grade.Grade’', i
'Grade.Grade', 'Grade'): '

Get List Values ('Student_Update.SERVCOHNP', 'SVC_COMP.ServCompDesc',

'SVC_COMP.ServComp', 'SVC_COHP'};
i|Get_List_Values Iz Update Addr.State', 'STATE.STATEDesc',

L A S R T A

sz

fm it

hd

T T T Txe E g T T T B

;- NotModfied -~ Suscesstuly Gompiled _

Figure 4.3 PL/SQL editor.

49

C. PROTOTYPES AND GUI DEVELOPMENT

1. Prototypes

Prototypes can be classified in several ways. Each has a different focus and ability
to display specific characteristics to interested observers. The main types of prototypes

according to (Kendall and Kendall, 1995) are:

e Patched-up prototype

¢ Non-operational prototype

DECLARE
Counter Number;
Alert_id Alert;
button_pressed Number;
JPG image dir VARCHAR2(20) := 'c:/image/;
photo_filename VARCHAR2(20);
item_id ITEM;
Check_Stud Exist EXCEPTION;
BEGIN
:Search_Cue.SSN_Pass:=(:Social||:Security||:Number);
:Student_Search. SSN_Entry:=:Search_Cue.SSN_Pass;
—Check to see if SSN represents active student record
SELECT Count(*)
INTO Counter
FROM Student
WHERE :SSN_Entry = StudSSN_ID;
--if the SSN is in the Student table retrieve data (Value should be 1)
IF Counter <> 0 THEN
SELECT StudSSN_ID,Rank,Grade, ServComp,StudLastName, StudFirstName
INTO :SSN_Entry,:Rank_Disp,:Grade_Display,:Serv_Comp,:LastName, :FirstName
FROM Student
WHERE :SSN_Entry = SmdSSN_ID;
Select ServCompDesc
INTO :ServCompDesc
From SVC_Comp

Where ServComp =
(Select Servcomp
From Student
Where StudSSN_ID = :Student_Search.SSN_Entry);
END IF:
END;

Figure 4.4 Program Language/Standard Query Language example.
50

o First of a Series prototype

¢ Selected Features prototype

The Patched-up protoépe is designed to show a proof-of-concept. The actual
processes and procedures utilized by the programmer may not be the most effective or
efficient, but the ability of the application to demonstrate functionality is the primary
purpose of the prototype design.

A Non-operational prototype is developed to show the system or product in a
framework so the observer obtains a feel for the physical representation of the device and
starts to envision the product in more than just a hypothetical situation. Often the purpose
of the design is simply to demonstrate the anticipated size and shape of the device.

The First of a series prototype, as the name implies is a fully functional product
which is designed for employment with revisions noted which are then quickly turned
around and subsequent products delivered incorporating changes requested by the
operator.

A Selected features prototype focuses on a subset of the requirements and
demonstrates the product’s ability to provide functionality to the user.

There are many advantages to utilizing a prototype to demonstrate the
functionality of a project. Prototyping is most useful when the application definition is not
well known, or when the end users requirements are not clear. Prototypes are well known
for their ability to accommodate incremental changes in project scope or various changes
in the organization’s requirements. When requirements change, or the focus is redirected,

a Rapid Application Development (RAD) process often allows managers to make better

51

quality decisions as to the most effective expenditure of resources. In the development of
the prototype for MCI, there were numerous major changes including alterations in the
processes being modeled, a change of the application development tool (from Delphi to
Developer/2000) and a change in the supporting database RDBMS (from Interbase to
Oracle 7). Even though these were major changes, the prototype concept easily adapted.
Essentially, every element of energy expended was transformed somehow into the final
prototype.

The prototype designed for MCI is a hybrid. It combines characteristics of the
patched-up prototype and the selected features prototype. Enrolling a student into a
course, retrieving data on a course, viewing student history, and providing a vehicle for
ordering materials is demonstrated by the prototype. The prototype does prove that the
developed data model is responsive and can be used to capture the data MCI clerks
routinely need.

Management must fully understand the disadvantages of prototypes. Often the
prototype receives criticism when management expects the application or product to be
fully functional and ready for introduction into daily operations. There is great pressure to
adopt the incomplete system into full operation. Only one specific type of prototype, the
“First in a Series” prototype, is capable of being introduced in that environment. The
first in a series prototype would best be used where an on-site programming effort is to be
employed and the future releases are to be rapidly developed and introduced. Ultimately
the MCI project personnel will be developing these types of applications and fielding

them.

52

2. GUI Environment

A GUI environment has numerous advantages over a DOS-based interface. If
designed properly the applications should be easier to learn, easier to use, and would
improve operator performance and efficiency. Consistency is the cornerstone of the GUI
design success. Components, screens, and menus should be used in the same manner and
have the same functionality throughout the application. With an established set of
standards, programmers will be able to develop a series of applications that not only look
and feel the same but make complimentary applications more easily assimilated into the
daily operations. Specifics regarding the GUI standards have been previously identified in
Chapter II. These standards must now be implemented during the prototype design.

The proof-of-concept prototype will be demonstrated showing functionality related

to the following SSD functions:

¢ Enrolling Students

¢ Building a view of course data (Catalog)

e Providing off-line order of material (link to future Log AIS system)

e Retrieving student history data

A comparison of MCI’s current DOS-based screens and the GUI screens are
presented in Appendix A. The figures in Appendix A present the following: the DOS
application Main screen (Figure A.1), the GUI prototype Main Screen (Figure A.2), DOS
application Enrollment screen (Figure A.3), GUI Prototype Enrollment/Course Catalog

screen (Figure A.4), DOS application Student history search screen (Figure A.5), GUI

prototype Student History screen (Figure A.6), DOS student update screen (Figure A.7),
GUI prototype Student Update screen (Figure A.8), the GUI prototype Homebase Screen
(Figure A.9), and several additional screens discussed at a later portion of this report.

The prototype is evaluated by SSD clerks regarding the look and feel of the
application along with any recommendations for functionality. These recommendations are
collated and compiled into a report that is submitted along with a set of organizational

GUI standards for the MCI program developer’s use.

D. APPLICATION DESIGN AND IMPLEMENTATION

The Immediate Assist prototype was designed to allow the operator to enroll a
student, display course data, allow the viewing of student history, and provide for the off-
line ordering of materials. The design of the prototype was based on the data and process
models detailed in (Slaughter, 1997) (Baden and Peters, 1997). This section will briefly

discuss the design and implementation of the prototype.

1. Process for Designing the Application

An effective method for designing the application is to work closely with the
process team that is decomposing the business areas outlined in the previous chapters. In
the absence of working directly with the BPR team, utilization of the Data Flow Diagrams
(DFDs) and process specifications is the next best option. During the development of
MCI’s Immediate Assist prototype, design began with a review of the DFDs and process
specifications and was then followed by a chalkboard session. The chalkboard session

allowed the project team to develop a visual sketch from the abstract requirements. From

54

—

there a mock up was constructed using Developer/2000 by placing components on the
canvases in a way that supports the chalkboard discussion. The proposal was then
presented to the group. Several iterations were conducted until the mock up gained the

group’s approval.

2. Opening Screen

The opening screen is a simple “switchboard” type concept. It provides a series of
buttons that cause the prototype to launch into one of the four main processes: finding a
student in the database, ordering material, displaying the course catalog, or enrolling in a
course, and displaying student history, or exiting the program. To make the form more
visually appealing, the MCI logo has been included on the screen. Figure A.2 displays the

opening screen.

3. Student Search

In order to enroll a student or review a student’s history, the prototype requires a
valid SSN with which to query the database. When the user activates the Student Search
button, they.are presented with a screen designed to accept the SSN of a potential student.
This screen is displayed in Figure A.13. An Oracle control block, called Search_Cue, has
been constructed to search the database. When the user presses the search button, a
trigger which encapsulates the necessary PL/SQL is fired and the database is queried for a
matching SSN. The supporting PL/SQL related to the search button is shown in Figure
4.1. Finding a SSN related to a student requires more than running a query on a single

table. The Marine Corps Total Force System (TFS) table also provides an input to the

55

process. If the SSN sought 1s not in the active student table of the database, the search
must be expanded to search the MCTF_Personnel table. If neither table holds the SSN in
question, the operator is notified via a dialog box (see Figure A.14) and then is allowed to
enter the student data and cause it to be inserted into the database. If the operator needs

to cancel the sear<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>